
Topological surface plasmons in superlattices
with changing sign of the average permittivity
HANYING DENG,1 XIANFENG CHEN,1 NICOLAE C. PANOIU,2 AND FANGWEI YE1,*
1Department of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
2Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E7JE, UK
*Corresponding author: fangweiye@sjtu.edu.cn

Received4August 2016; revised 19August 2016; accepted 19August 2016; posted22August 2016 (Doc. ID273114); published12September 2016

We address the topological properties of one-dimensional
plasmonic superlattices composed of alternating metallic
and dielectric layers. We reveal that the Zak phase of such
plasmonic lattices is determined by the sign of the spatial
average of their permittivity, ϵ̄, and as such the topology
and their associated interfacial (edge) states are extremely
robust against structural disorder. Our study shows that
the topologically protected interfacial modes occurring at
the interface between two plasmonic lattices with opposite
signs of ϵ̄ can be viewed as the generalization of the conven-
tional surface plasmon polaritons existing at metallic–
dielectric interfaces. © 2016 Optical Society of America
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The nontrivial topological properties of matter have been
attracting increasing interest in condensed matter physics, as
the theory of band topology explains a series of striking phe-
nomena like the quantum Hall effect [1–3] and topological
insulators [4–8]. Starting from the duality between their math-
ematical description, similar concepts and ideas have been in-
troduced into the realm of optics, and nontrivial topological
effects have been demonstrated across a variety of optical sys-
tems [9]. Perhaps the simplest optically topological structure is
analogous to the celebrated Su–Schrieffer–Heeger (SSH) model
for polyacetylene [10], in which a chain of sites with alternating
signs of the coupling constant exhibits two topologically dis-
tinct phases and topologically protected interfacial modes exist
at the interface between two topologically distinct chains.
Realization of the SSH model in photonic systems includes di-
merized dielectric waveguides [11] and dielectric nanoparticles
[12], as well as metallic nanodisks [13]. Furthermore, edge
states between coupled plasmonic waveguides described by
the SSH model have been investigated in graphene [14] and
plasmonic waveguide arrays [15]. These structures are optically
discrete, thus they closely mimic the original SSH model.
On the other hand, topological properties and associated edge
states of one-dimensional (1D) photonic structures have also

been investigated in continuous periodic systems, i.e., beyond
the tight-binding approximation and other discrete models
[16,17].

All the topological properties of 1D structures mentioned
above can be characterized by a single physical quantity, the
so-called Zak phase [18]. This is a special kind of Berry phase,
associated with 1D bulk bands. The characterization of the Zak
phase of matter is of fundamental importance to the under-
standing of topology-related physical properties of condensed
matter systems. Optics is emerging as an alternative platform
to study such topology-induced phenomena, as in many cases it
provides more suitable theoretical and experimental tools to ex-
plore them. In particular, specific ways to measure the Zak
phase in optical systems have been proposed theoretically [19]
and implemented experimentally by employing optical wave-
guide systems [20–23].

In this Letter, we focus on topological properties of 1D
plasmonic superlattices composed of alternating metallic and
dielectric layers. We reveal that the Zak phase of such super-
lattices is determined by the sign of the spatial average of the
permittivity of the lattice, ϵ̄, such that lattices with ϵ̄ > 0 are
topologically distinct from those with ϵ̄ < 0. Due to the fact
that fully random structural perturbations of the superlattice
that preserve the averaged values of the thickness of the con-
stituent layers do not modify the value of ϵ̄ and consequently its
sign, the topology and the associated interfacial (edge) states of
the plasmonic superlattices are found to be extremely robust
against such perturbations. Our analysis reveals that the topo-
logically protected modes at the interface between two super-
lattices with opposite signs of the average permittivity represent
a conceptual generalization of the well-known surface plasmon
polaritons (SPPs) formed at metal/dielectric interfaces.

Let us consider a 1D plasmonic superlattice composed of
alternating layers of metallic and dielectric materials stacked
along the x-axis, as depicted in Fig. 1(a). To be more specific,
we assume that the metallic and dielectric layers are made
of silver and silicon, respectively. At the wavelength of
λ ! 1550 nm, the permittivity of dielectric (silicon) materials
is ϵd ! 12.25 and the complex permittivity of the metal (silver)
is ϵm ! −125.39" 2.84i [24]. Since the imaginary part of the
permittivity of the metal is very small as compared to its real
part, the influence of the metal loss (heat dissipation) on the
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results are found to be negligible. Despite this, in the following
analysis we have taken into account the small imaginary part of
the permittivity of the metal, unless otherwise stated.

Considering the propagation along the z-axis of a TM-
polarized optical beam (i.e., the only nonzero components
of the electromagnetic fields are Ex , Ez , and Hy), one can
readily find the photonic band structure of the superlattice
by solving the following transcendental equation:

cos#kxΛ$ ! cos#kd td $ cos#kmtm$

−
1

2

!
ζd
ζm

"
ζm
ζd

"
sin#kd td $ sin#kmtm$; (1)

where kx is the Bloch wavevector, kz is the propagation

wavevector, kj !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#ω∕c$2ϵjμj − k2z

q
, ζj ! kj∕ϵj, (j ! d , m),

td and tm are the thickness of dielectric and metallic layers, re-
spectively, Λ ! td " tm is the period of the superlattice, and c
is the light speed in vacuum. By fixing the frequency ω in
Eq. (1), the dependence kz ! kz#kx$ defines the photonic band
structure (spatial dispersion relation) for that particular fre-
quency [25]. The dependence of the band structure on the
thickness of the metallic layer is shown in Fig. 1(b) for a fixed
thickness of the dielectric layer, td ! 240 nm. Note that
choosing a specific value for td does not make our analysis less
general. However, it should be mentioned that, in order for a
two-band configuration to occur, as it is required in this study
for reasons that will become apparent later, td should be larger
than a certain critical value (for example, for tm ! 25 nm, the
minimum td required is 199 nm).

A known property of the band structure of plasmonic super-
lattices is that when the spatially averaged permittivity of the
superlattice is zero, namely, when ϵ̄ ! ϵd td"ϵmtm

td"tm
! 0, a diaboli-

cal point (DP)—the 1D counterpart of Dirac points—appears

at the center of Brillouin zone, kx ! 0 [25–27]. This property
is illustrated in Figs. 1(b) and 1(c), as indeed for some specific
value of tm (in the example shown in these plots, tm !
23.45 nm), the condition ϵ̄ ! 0 holds. Moreover, for this spe-
cific value of tm, the upper band touches the lower one in such a
way that a DP is formed at #kx; kz$ ! #0; kDP

z $, where
kDP
z ! k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εmεd∕#εm " εd $

p
. On the other hand, once the

zero-average-permittivity condition is broken, namely, when ei-
ther ϵ̄ > 0 or ϵ̄ < 0, the DP vanishes and a gap opens. Upon
understanding this mechanism of formation of a DP, an
interesting question arises, i.e., in the context of light wave
interactions with such superlattices what are the differences
between a superlattice with ϵ̄ > 0 and one with ϵ̄ < 0?

To answer this question, we study the topological properties
of these superlattices by calculating the Zak phase of their bulk
bands, defined by the following formula [18]:

θz !
Z

π∕Λ

−π∕Λ

!
i
Z

unitcell
ψ%
n;kx

∂ψn;kx
∂kx

dx
"
dkx; (2)

where ψn;kx is the periodic-in-cell part of the Bloch magnetic
field eigenfunction of a state belonging to the nth band at kx ,
i.e.,Hy;n;kx #x$ ! ψn;kx #x$ exp#ikxx$. The function ψn;kx #x$ can
be obtained analytically using the transfer-matrix method [28].
The Zak phase depends on the choice of the origin, and here we
choose this origin to be the center of the dielectric layer.

The outcome of the calculation of the Zak phase is shown in
Fig. 1(d). As expected, the value of θz is binary valued, being
equal to either 0 or π. Importantly, the Zak phase of the plas-
monic superlattices is found to be solely dependent on the sign
of the average permittivity, thus being independent of the
particular geometry of the superlattice or the values of the per-
mittivity of the layers. Specifically, it is equal to zero if ϵ̄ > 0
and is equal to π when ϵ̄ < 0. In other words, the topology of
plasmonic superlattices is uniquely defined by the sign of ϵ̄, and
structural transformations or geometrical fluctuations preserve
the superlattice topology provided that ϵ̄ does not change its
sign. If, on the other hand, the plasmonic superlattice is struc-
turally transformed in such a way that ϵ̄ changes its sign after it
passes through the zero point, as per Fig. 1(d), θz varies accord-
ingly, leading to the modification of the topology of the super-
lattice. Note also that by changing the origin with respect to
which the Zak phase is calculated the two constant values
change. However, the same phase shift of π occurs when ϵ̄
changes its sign.

The dependence of the topology of plasmonic superlattices
on the sign of ϵ̄ can be explained by the general topological
band theory. As mentioned, a DP appears in the band structure
of lattices when ϵ̄ ! 0 and it vanishes (with a gap opening in
the band structure) when ϵ̄ becomes nonzero. Following the
general topological band theory, which states that the topologi-
cal phase of matter changes when a bandgap closes at a DP and
then reopens when the system is further modified [4,5], we
therefore expect that the topology of plasmonic superlattices
is indeed characterized by the sign of ϵ̄ and remains invariant
as long as the sign of ϵ̄ is preserved. Thus, a fundamental result
of this analysis is that we can directly link in a simple way the
topology of plasmonic superlattices to a single invariant param-
eter characterizing the plasmonic structure, namely, the sign
of the average dielectric permittivity! This finding may have
practical implications on the design and characterization of
topologically functional devices implemented using plasmonic

Fig. 1. (a) Schematic of a dielectric–metal layered lattice.
(b) Dependence of photonic band structure kz#kx$ on the thickness
of the metallic layer, tm. A DP appears in the band structure at
tm ! 23.45 nm, for which ϵ̄ ! 0. (c) Lattice transmission bands
(orange domains) versus metallic layer thickness. (d) Zak phase and
average permittivity ϵ̄ of the lattice versus tm. In these calculations,
λ ! 1550 nm, td ! 240 nm, ϵm ! −125.39, and ϵd ! 12.25.

4282 Vol. 41, No. 18 / September 15 2016 / Optics Letters Letter



nanostructures. Equally important is that these ideas can poten-
tially be extended to other 1D superlattices characterized by
spatially averaged rather than local physical quantities, such
as zero-n̄ superlattices [29–31]. Our findings also imply that,
if for instance graphene sheets are incorporated in superlattices,
electrically or optically tunable topological nanodevices can be
achieved thanks to the tunability of graphene [27].

Consider now two adjacent, semi-infinite plasmonic super-
lattices, and let us investigate the possibility that localized states
exist at the interface between superlattices. The two superlat-
tices are designed to have different signs of ϵ̄ by, for example,
using different thicknesses of the metallic layers, as illustrated in
Fig. 2(a), or even setting tm ! 0 for one superlattice, which
means that the superlattice becomes a pure dielectric medium
[see Fig. 2(b)]. Consistent with the bulk-edge correspondence
principle, which states that localized zero-energy states exist at
the interface between two insulators with distinct band topol-
ogy, our mode analysis of such interfacial systems reveals that if
two connected superlattices differ in their sign of ϵ̄, localized
modes always appear at the interface separating the two super-
lattices. On the other hand, if the sign of ϵ̄ for both superlattices
is the same, their interface supports no localized modes. This
is similar to the case of surface waves at the interface between
two homogeneous and isotropic media, namely, such
localized modes, called SPPs, exist only if the permittivities of
the two media have opposite signs. Indeed, the field profile
of the surface modes in Fig. 2 resembles that of SPPs,
with the additional feature being the field oscillations in
superlattices.

The above analysis is further corroborated by our direct
beam propagation simulations. Specifically, we launched nor-
mally onto the interface a TM-polarized Gaussian beam of nar-
row width, w ≈ 3td , and determined the electromagnetic field
as it propagated into the superlattice. As expected, when the
sign of ϵ̄ in the two adjacent superlattices takes different values,
a localized mode quickly forms at the interface while the
extra energy of the input wave diffracts as radiative waves
[see Figs. 3(a) and 3(b)]. In contrast, when the sign of ϵ̄ of
the two adjacent superlattices is the same [negative in Fig. 3(c)
and positive in Fig. 3(d)], the input optical beam strongly dif-
fracts without any signature of the formation of a surface mode
being observed.

As the topology of plasmonic superlattices is determined by
the sign of the averaged permittivity, one expects that the
topology and the associated interfacial states are extremely ro-
bust against structural disorder. This is expected because a fully
random perturbation of the structure that preserves the aver-
aged values of the thickness of the constituent layers does
not modify the spatially averaged dielectric permittivity or
its sign. To test this conjecture, we consider two adjacent super-
lattices, as shown in Fig. 2, but now introduce disorder into
them by defining a random fluctuation of the thickness of
the metallic components. Thus, the thickness of the nth Ag
layer in each plasmonic lattice is set to tnm ! tm0 " δn, where
tm0 is the average thickness, and δn is a random value. We as-
sume δn to be uniformly distributed in the interval of &−δ; δ',
0 < δ < tm0. Hence, the level of disorder can be characterized
by the parameterΔ ≡ δ∕tm0. The spectra and field profile of the
interface modes determined for increasing disorder strength, Δ,
are shown in Fig. 4.

It is known that incorporating disorder in a 1D lattice always
leads to the formation of localized Anderson modes. Anderson
modes strongly depend on the disorder strength, with their de-
gree of spatial localization increasing with the disorder strength,
Δ. The eigenvalue spectra of Anderson modes were statistically
averaged over 50 randomly perturbed superlattice configura-
tions, with the results presented in Fig. 4(a). It shows that,
as expected, the Bragg gap of the unperturbed lattices narrows
as Δ increases [32]. In sharp contrast, the wave profile of the
interfacial mode remains almost unchanged, even when the
disorder strength increases to 80% and above, as shown
in Figs. 4(b) and 4(c). Furthermore, the eigenvalue kz

Fig. 2. (a) Profile of the electric field of the surface mode located
at the interface between a plasmonic lattice with tm ! 45 nm
(ϵ̄ ! −9.48" 0.45i) and a plasmonic lattice with tm ! 10 nm
(ϵ̄ ! 6.74" 0.11i). (b) The same as in (a) but with the second super-
lattice replaced by a uniform dielectric medium with ϵ ! 12.25. The
white dashed lines indicate the position of the interface. The remain-
ing parameters are td ! 240 nm, ϵm ! −125.39" 2.84i, and
ϵd ! 12.25.

Fig. 3. Top (bottom) panels show the evolution of the normalized
electric field amplitude when a TM-polarized Gaussian beam is in-
jected normally at the interface between two plasmonic superlattices
with opposite (the same) signs of ϵ̄. In the right panels, one of the
superlattices is replaced by a homogeneous medium. The average
of the dielectric permittivity for each superlattice and medium is in-
dicated in the figure. The Ex component of the input Gaussian beam
is given by Ex#x$ ! exp&−x2∕#3td $2', whereas td ! 240 nm is the
thickness of the dielectric layers. Red arrows indicate the location
of the incident beam.

Letter Vol. 41, No. 18 / September 15 2016 / Optics Letters 4283



(propagation constant) of the interfacial mode is unaffected by
structural disorder. The interfacial mode is actually pinned at
the photonic DP of the unperturbed superlattice with ϵ̄ ! 0,
namely, the eigenvalue of the interfacial mode is given by
kDP
z ! k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εmεd∕#εm " εd $

p
. Note that this eigenvalue is equal

to that of conventional SPPs formed at the interface between a
semi-infinite metal and a semi-infinite dielectric medium [33].
Therefore, the topologically protected interface modes, local-
ized at the interface between two superlattices characterized
by different signs of ϵ̄, represent a natural generalization of
the conventional SPPs. Compared to conventional SPPs, how-
ever, such generalized SPP waves obviously have more degrees
of freedom, which makes them an appealing alternative to be
employed in nanophotonic applications. For example, by prop-
erly choosing the parameters of the two superlattices, it could
be possible to engineer and reduce the losses of topological
SPPs below those of conventional SPPs.

In summary, we have studied the topological properties of
plasmonic superlattices and revealed that their topology is
determined by the sign of their spatially averaged dielectric
permittivity. As such, their topology and the associated edge
(interface) states are extremely robust against the structural ran-
dom perturbations. Such topologically protected localized
states at the interface between two superlattices with opposite
signs of the average permittivity represent a natural generaliza-
tion of the well-known SPPs supported by metal/dielectric
interfaces.
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Fig. 4. (a) Spectrum of Anderson modes and (b),(c) dependence of
eigenvalue (green line) and electric field amplitude (red curve) of the
interfacial mode on the disorder level, calculated for the interface sys-
tem composed of two plasmonic lattices that, in the unperturbed limit,
are the same as those shown in Figs. 2(a) and 2(b), respectively. The
mode profiles and the spectrum of the Anderson modes are calculated
for five disorder levels: (A) 0%, (B) 20%, (C) 40%, (D) 60%, and (E)
80%. The dot inside the bandgap of Fig. 4(a) corresponds to the inter-
face mode. All results are obtained by an ensemble average over 50
disorder realizations.
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